Model LV/LH
Steam Dispersion Panels

Installation, Operation, and Maintenance Manual

Read and save these instructions
Table of contents

UNPACKING HIGH-EFFICIENCY TUBES. .. 1
INSTALLATION ... 2
 Ultra-sorb Model LV field assembly .. 2
 Ultra-sorb Model LV mechanical specifications 5
 Ultra-sorb Model LV mounting .. 6
 Ultra-sorb Model LH field assembly 9
 Ultra-sorb Model LH mechanical specifications 11
 Ultra-sorb Model LH mounting .. 12
 Ultra-sorb Model LV and LH connections and dispersion tube detail 13
 Selecting the location .. 14
 Determine humidifier placement 14
 Placement in an air handling unit 14
 Mounting and support .. 16
 Installation in a cold air stream 16
 Placement upstream from an elbow or duct split 16
 Installation above valuable equipment 16
 Recirculation unit .. 16
 Panel support ... 16
 Mounting in an air handling unit 18
 Mounting in a horizontal duct 19
 Mounting in a vertical duct 20
 Supply and drain connections and dimensions 21
 Piping .. 22
 Steam from a boiler .. 23
 Steam from a non-electrode-type evaporative humidifier 24
 Steam from an electrode-type evaporative humidifier 25
 Retrofitting an existing Ultra-sorb 26
OPERATION ... 28
 Performance data ... 28
 Startup ... 29
MAINTENANCE ... 30
 Inspecting and servicing components 30
 Strainer ... 30
 Steam traps on main steam supply 30
 Valves ... 30
 O-Rings (in slip couplings) 30
 High-Efficiency Tubes ... 30
 Troubleshooting ... 31
 Replacement parts ... 34
WARRANTY ... 38
Unpacking High-Efficiency Tubes

NOTE: If you have an Ultra-sorb without High-efficiency dispersion tubes (non-insulated tubes), please skip to the next page.

UNPACKING

• Remove the dispersion assembly from the shipping container; be careful not to bump or scrape the PVDF insulating material on the dispersion tubes.

• Some dispersion panels are shipped unassembled by customer request or by shipping necessity. Do not lay High-Efficiency Tubes across or under anything that could compress or damage the insulating material. Compressed insulating material has a reduced R-value.

• Avoid bumping or snagging the PVDF insulating material. Although PVDF is robust, rough handling can cause tears, which could negatively impact performance.

• Before start-up, remove the clear poly film by tearing it along the perforation. Do not use a knife or sharp object to remove the poly film.

High-Efficiency Tube option

Dispersion assemblies with the High-Efficiency Tube option are designed to produce significantly less dispersion-generated condensate and airstream heat gain, which reduces wasted energy by up to 85%. These improvements are accomplished by reducing the thermal conductivity of the tubes with 1/8” of polyvinylidene fluoride (PVDF) insulating material on the outside of the tubes. These assemblies require careful unpacking, installation, and handling. If your dispersion assembly has the High-Efficiency Tube option, be sure to read this section carefully.

CAUTION

Remove clear poly film; do not remove white PVDF insulation.

High-Efficiency Tubes are sleeved in clear poly film for protection during processing, shipping, and installation. Leave the clear poly film on until installation is complete so the insulation stays clean.

Equally important, remove and discard the clear poly film before start-up by tearing it along the perforations. Do not remove the white PVDF insulation.

• Keep flame away from the insulating material to avoid damage.

• PVDF is inherently resistant to UV light. Indirect, low-intensity UV-C light from germicidal lamps will not cause the insulating material to degrade.

• Do not tighten mounting clamps or fasteners to any part of the dispersion tube.
Ultra-sorb Model LV field assembly

PLEASE READ INSTRUCTIONS WHILE ASSEMBLING

1. Unpack

Unpack the Ultra-sorb components and verify that you have all items on the packing list.

Lay the components on a flat surface, and position the header assemblies as shown in Figure 2-1. Orient the condensate header assembly so the 3/4" half coupling drain connection is to your left, and orient the supply header assembly so the steam inlet (nipple or tubing) is to your right.

Table 2-1: Ultra-sorb Model LV components

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply header assembly with shouldered slip couplings</td>
<td>1</td>
</tr>
<tr>
<td>Condensate header assembly</td>
<td>1</td>
</tr>
<tr>
<td>Mounting flange</td>
<td>2</td>
</tr>
<tr>
<td>Dispersion tubes with slip couplings</td>
<td>varies</td>
</tr>
<tr>
<td>Condensate drain tube</td>
<td>1</td>
</tr>
<tr>
<td>1/4–20 x 3/4" bolt</td>
<td>8</td>
</tr>
<tr>
<td>1/4–20 nut</td>
<td>8</td>
</tr>
<tr>
<td>Lock washer</td>
<td>8</td>
</tr>
</tbody>
</table>
Ultra-sorb Model LV field assembly

2. Bolt mounting flanges to supply header assembly

Refer to Figure 3-1 and 3-3. Attach the two mounting flanges as indicated using 1/4”–20 bolts with the nuts only finger tightened.

3. Insert dispersion tubes

Refer to Figure 3-2. Insert the plain ends (no slip couplings) of the dispersion tubes into the slip coupling already mounted on the supply header assembly. The slip couplings are factory lubricated; if well aligned during insertion, no further lubrication should be needed. Push and twist the tube in until it bottoms out on the internal shoulder of the slip coupling. See Figure 3-4.

Use care to avoid cutting the internal O-rings of the slip couplings.
Ultra-sorb Model LV field assembly

4. Bolt mounting flanges to condensate header assembly

Refer to Figure 4-1. Push the slip couplings onto the dispersion tubes flush with the tube ends. Make sure the drain connection is properly oriented. Attach the mounting flanges using 1/4”-20 bolts, and leave the nuts finger tight.

5. Slide slip couplings onto condensate header assembly and orient tubelets

SUGGESTION: Gripping the drain connection with vise grip pliers and applying a back and forth rolling motion to the header will assist in sliding the slip couplings into place.

Refer to Figure 4-2. It may be necessary to push and twist the slip couplings onto the condensate header. Again care must be taken to avoid cutting the internal O-rings. Slide the slip couplings on until they bottom out against the stop disc on the condensate header. The tubelets must be aimed so that they discharge the steam perpendicular to the airstream. Rotate the dispersion tubes as needed.

After tightening the 1/4”-20 bolts at all four corners, the Ultra-sorb panel is ready for installation. See Page 14.

FIGURE 4-1: CONDENSATE HEADER ASSEMBLY

FIGURE 4-2: CONDENSATE HEADER ASSEMBLY
Ultra-sorb Model LV mechanical specifications

FIGURE 5-1: ULTRA-SORB MODEL LV DIMENSIONS

Ultra-sorb Model LV
• Vertical dispersion tubes
• Suitable for AHUs or ductwork
• Use when duct height is greater than duct width
• May use with pressurized or nonpressurized steam (horizontal airflow only)

Table 5-1: Header capacities

<table>
<thead>
<tr>
<th>Header capacity</th>
<th>Header diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporative steam</td>
<td>Boiler steam</td>
</tr>
<tr>
<td>lbs/hr</td>
<td>kg/h</td>
</tr>
<tr>
<td>300</td>
<td>135</td>
</tr>
<tr>
<td>600</td>
<td>270</td>
</tr>
<tr>
<td>1100</td>
<td>500</td>
</tr>
<tr>
<td>1850</td>
<td>820</td>
</tr>
</tbody>
</table>

Table 5-2: Ultra-sorb Model LV dimensions

A Unit width	15” (380 mm) min, 147” (3735 mm) max, in 1” (25 mm) increments
A’ Face width	12” (305 mm) min, 144” (3660 mm) max, in 1” (25 mm) increments
B Unit height	21” (530 mm) min, 156” (3960 mm) max, in 1” (25 mm) increments
B Face height	12” (305 mm) min, 144” (3660 mm) max, in 1” (25 mm) increments
C Steam inlet diameter	Determined by maximum steam capacity
D Condensate drain	3/4” pipe thread (DN20)
E Header enclosure (front to back)	For 3” (DN80) and 4” (DN100) headers, E = 5” (127 mm); for 5” (DN125) header, E = 6” (152 mm); for 6” (DN150) header, E = 7” (178 mm)
F Header enclosure (top to bottom)	For 3” (DN80) header F = 4.5” (114 mm); for 4” (DN100) header, F = 5.5” (140 mm); for 5” (DN125) header, F = 6.5” (165 mm); for 6” (DN150) header, F = 7.5” (191 mm)
G Mounting flange	1.5” (38 mm)
H Condensate header enclosure	4.5” (114 mm)

Note: Header dimensions are determined by capacity. See Table "Header capacities" on page 5-1.
Ultra-sorb Model LV mounting

FIGURE 6-1: MOUNTING ULTRA-SORB MODEL LV IN A HORIZONTAL AIRFLOW (PRESSURIZED STEAM APPLICATION SHOWN)

Notes:
1. For pressurized steam applications we recommend installing a 10" (255 mm) minimum water seal or a float and thermostatic (F&T) trap. F&T traps are approximately 7" (180 mm) in height.
2. Locate air gap only in spaces with adequate temperature and air movement to absorb flash steam; otherwise, condensation may form on nearby surfaces. Refer to governing codes for drain pipe size and maximum discharge water temperature.
3. When mounting an Ultra-sorb in a duct, headers and flanges are mounted outside the duct. For vertical airflow, see Ultra-sorb LH.
4. 100% of the airflow must pass through the Ultra-sorb, which means that any openings surrounding it must be sealed. The blanked-off area below the Ultra-sorb provides clearance height for F&T traps, water seals, and condensate piping connections.
5. Model LV recommended when steam supply pressure is less than 2 PSI, specifically with steam generating humidifiers.
6. Due to the pressure drop across the valve, the steam pressure at the header traps is minimal, therefore you cannot lift condensate or return condensate to a pressurized return through header traps.
7. Dispersion tubes are available at: 3" (76 mm), 6" (152 mm), 9" (228 mm), 12" (305 mm) centers.
8. Ultra-sorb humidifiers will be assembled, crated, and shipped intact in all sizes up to 93" (2360 mm) unit height. Ultra-sorb can be shipped unassembled, by request, requiring field assembly.
9. Standard sizes are 12" to 144" (305 mm to 3658 mm) x 12" to 144" (305 mm to 3658 mm) in 1" (25 mm) increments. Larger sizes are available.

Each Ultra-sorb humidifier is furnished with:
1. Type 304 stainless steel header/separator and dispersion tubes.
2. Tube adapters for connection of dispersion tubes to header (two per tube).

Each Ultra-sorb humidifier used with boiler steam is also furnished with:
1. One 3/4" NPT float and thermostatic header traps on Model LV.
2. Inlet "Y" strainer.
3. Normally closed steam valve with stainless steel parabolic plug and seat.
Ultra-sorb Model LV mounting

FIGURE 7-1: MOUNTING ULTRA-SORB MODEL LV IN A HORIZONTAL AIRFLOW (NONPRESSURIZED STEAM APPLICATION SHOWN)

Notes:
1. Locate air gap only in spaces with adequate temperature and air movement to absorb flash steam; otherwise, condensation may form on nearby surfaces. Refer to governing codes for drain pipe size and maximum discharge water temperature.
2. When mounting an Ultra-sorb in a duct, headers and flanges are mounted outside the duct.
3. 100% of the airflow must pass through the Ultra-sorb, which means that any openings surrounding it must be sealed. The blanked-off area below the Ultra-sorb provides clearance height for water seals and condensate piping connections.
4. Model LV recommended when steam supply pressure is less than 2 PSI, specifically with steam generating humidifiers. For vertical airflow, see Ultra-sorb LH.
5. Due to the pressure drop across the valve, the steam pressure at the header traps is minimal, therefore you cannot lift condensate or return condensate to a pressurized return through header traps.
6. Dispersion tubes are available at: 3” (76 mm), 6” (152 mm), 9” (228 mm), 12” (305 mm) centers.
7. Ultra-sorb humidifiers will be assembled, crated, and shipped intact in all sizes up to 93” (2360 mm) unit height. Ultra-sorb can be shipped unassembled, by request, requiring field assembly.
8. Standard sizes are 12” to 144” (305 mm to 3658 mm) x 12” to 144” (305 mm to 3658 mm) in 1” (25 mm) increments. Larger sizes are available.

Each Ultra-sorb humidifier is furnished with:
1. Type 304 stainless steel header/separator and dispersion tubes.
2. Tube adapters for connection of dispersion tubes to header (two per tube).

* For electrode type humidifiers pitch towards Ultra-sorb.
For non-electrode type humidifiers pitch towards humidifier.
Ultra-sorb Model LH field assembly

2. Bolt mounting flanges to supply header assembly

Refer to Figures 8-1 and 8-2.

Attach the two mounting flanges to the supply header assembly as indicated using 1/4”–20 bolts with the nuts finger tight.

3. Insert dispersion tubes

Refer to Figure 8-3. Insert the plain ends (no slip couplings) of the dispersion tubes into the slip couplings already mounted on the supply header assembly. The slip couplings are factory lubricated; if well aligned during insertion, no further lubrication should be needed. Push and twist the tube in until it bottoms out on the internal shoulder of the slip coupling (see Figure 8-4).
Ultra-sorb Model LH field assembly

PLEASE READ INSTRUCTIONS WHILE ASSEMBLING

1. Unpack

Unpack the Ultra-sorb components and verify that you have all items on the packing list.

Note that both the supply header assembly and the condensate header assembly have a 3/4" half coupling drain connection on one end. This will be the lower end of the installed dispersion assembly. The supply header assembly has a steam inlet (nipple or tubing) on the end opposite the drain connection.

Arrange the components on a large, flat working surface, positioning them as indicated in Figure 9-1 (condensate header to the left, supply header to the right).

Table 9-1: Ultra-sorb Model LH components

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply header assembly with shouldered slip couplings</td>
<td>1</td>
</tr>
<tr>
<td>Condensate header assembly</td>
<td>1</td>
</tr>
<tr>
<td>Mounting flange</td>
<td>2</td>
</tr>
<tr>
<td>Dispersion tubes with slip couplings</td>
<td>varies</td>
</tr>
<tr>
<td>1/4-20 x 3/4" bolt</td>
<td>8</td>
</tr>
<tr>
<td>1/4-20 nut</td>
<td>8</td>
</tr>
<tr>
<td>Lock washer</td>
<td>8</td>
</tr>
</tbody>
</table>

FIGURE 9-1: ULTRA-SORB MODEL LH
Use care to avoid cutting the internal O-rings of the slip couplings.

4. **Bolt mounting flanges to condensate header assembly**

Refer to Figure 10-1. Push the slip couplings onto the dispersion tubes flush with the tube ends. Make sure the drain connection is properly oriented. Attach the mounting flanges using 1/4”–20 bolts, and leave the nuts finger tight.

5. **Slide slip couplings onto condensate header assembly and orient tubelets**

SUGGESTION: Gripping the drain connection with vise grip pliers and applying a back and forth rolling motion to the header will assist in sliding the slip couplings into place.

Refer to Figure 10-2. It may be necessary to push and twist the slip couplings onto the condensate header. Again care must be taken to avoid cutting the internal O-rings. Slide the slip couplings on until they bottom out against the stop disc on the condensate header. The steam tubelets must be aimed so that they discharge the steam perpendicular to the airstream. Rotate the dispersion tubes as needed.

After tightening the 1/4”–20 bolts at all 4 corners, the Ultra-sorb panel is ready for installation. See Page 14.
Ultra-sorb Model LH mechanical specifications

Figure 11-1: Ultra-Sorb Model LH Dimensions

- **A** Unit width: 21" (530 mm) min, 129" (3280 mm) max, in 1" (25 mm) increments
- **A'** Face width: 12" (305 mm) min, 120" (3050 mm) max, in 1" (25 mm) increments
- **B** Unit height: 15" (380 mm) min, 123" (3125 mm) max, in 1" (25 mm) increments. Shipped unassembled by request or if unit height is more than 93" (2360 mm).
- **B'** Face height: 12" (305 mm) min, 120" (3050 mm) max, in 1" (25 mm) increments
- **C** Steam inlet diameter: Determined by maximum steam capacity
- **D** Condensate drain: 3/4" pipe thread (DN20)
- **E** Header enclosure (front to back): For 3" (DN80) and 4" (DN100) headers, E = 5" (127 mm); for 5" (DN125) header, E = 6" (152 mm); for 6" (DN150) header, E = 7" (178 mm)
- **F** Header enclosure (top to bottom): For 3" (DN80) header, F = 4.5" (114 mm); for 4" (DN100) header, F = 5.5" (140 mm); for 5" (DN125) header, F = 6.5" (165 mm); for 6" (DN150) header, F = 7.5" (191 mm)
- **G** Mounting flange: 1.5" (38 mm)
- **H** Condensate header enclosure: 4.5" (114 mm)

Table 11-1: Ultra-sorb Model LH capacities

<table>
<thead>
<tr>
<th>Header capacity</th>
<th>Header diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporative steam lbs/hr</td>
<td>kg/h</td>
</tr>
<tr>
<td>300</td>
<td>135</td>
</tr>
<tr>
<td>600</td>
<td>270</td>
</tr>
<tr>
<td>1100</td>
<td>500</td>
</tr>
<tr>
<td>1850</td>
<td>820</td>
</tr>
</tbody>
</table>

Ultra-sorb Model LH
- Horizontal dispersion tubes
- Suitable for AHUs or ductwork
- Use when duct width is greater than duct height
- May use with pressurized steam in a vertical or horizontal airflow; may use with nonpressurized steam in a vertical airflow

Table 11-2: Ultra-sorb Model LH dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unit width: 21" (530 mm) min, 129" (3280 mm) max, in 1" (25 mm) increments</td>
</tr>
<tr>
<td>A'</td>
<td>Face width: 12" (305 mm) min, 120" (3050 mm) max, in 1" (25 mm) increments</td>
</tr>
<tr>
<td>B</td>
<td>Unit height: 15" (380 mm) min, 123" (3125 mm) max, in 1" (25 mm) increments. Shipped unassembled by request or if unit height is more than 93" (2360 mm).</td>
</tr>
<tr>
<td>B'</td>
<td>Face height: 12" (305 mm) min, 120" (3050 mm) max, in 1" (25 mm) increments</td>
</tr>
<tr>
<td>C</td>
<td>Steam inlet diameter: Determined by maximum steam capacity</td>
</tr>
<tr>
<td>D</td>
<td>Condensate drain: 3/4" pipe thread (DN20)</td>
</tr>
<tr>
<td>E</td>
<td>Header enclosure (front to back): For 3" (DN80) and 4" (DN100) headers, E = 5" (127 mm); for 5" (DN125) header, E = 6" (152 mm); for 6" (DN150) header, E = 7" (178 mm)</td>
</tr>
<tr>
<td>F</td>
<td>Header enclosure (top to bottom): For 3" (DN80) header, F = 4.5" (114 mm); for 4" (DN100) header, F = 5.5" (140 mm); for 5" (DN125) header, F = 6.5" (165 mm); for 6" (DN150) header, F = 7.5" (191 mm)</td>
</tr>
<tr>
<td>G</td>
<td>Mounting flange: 1.5" (38 mm)</td>
</tr>
<tr>
<td>H</td>
<td>Condensate header enclosure: 4.5" (114 mm)</td>
</tr>
</tbody>
</table>

Note: Header dimensions are determined by capacity. See Table 1-1.
Ultra-sorb Model LH mounting

FIGURE 12-1: MOUNTING ULTRA-SORB MODEL LH IN A HORIZONTAL AIRFLOW (PRESSURIZED STEAM APPLICATIONS ONLY)

Notes:
1. A water seal or trap is required on each condensate line. For pressurized steam applications we recommend installing a 10" (255 mm) minimum water seal or an F&T trap. F&T traps are approximately 7" (180 mm) in height.
2. Locate air gap only in spaces with adequate temperature and air movement to absorb flash steam; otherwise, condensation may form on nearby surfaces. Refer to governing codes for drain pipe size and maximum discharge water temperature.
3. When mounting an Ultra-sorb in a duct, headers and flanges are mounted outside the duct.
4. 100% of the airflow must pass through the Ultra-sorb, which means that any openings surrounding it must be sealed. The blanked-off area below the Ultra-sorb provides clearance height for F&T traps, water seals, and condensate piping connections.
5. Model LV recommended when steam supply pressure is less than 2 PSI, specifically with steam generating humidifiers.
6. Due to the pressure drop across the valve, the steam pressure at the header traps is minimal, therefore you cannot lift condensate or return condensate to a pressurized return through header traps.
7. Dispersion tubes are available at: 3" (76 mm), 6" (152 mm), 9" (228 mm), 12" (305 mm) centers.
8. Ultra-sorb humidifiers will be assembled, crated, and shipped intact in all sizes up to 93" (2360 mm) unit height. Ultra-sorb can be shipped unassembled, by request, requiring field assembly.
9. Standard sizes are 12" to 120" (305 mm to 3050 mm) x 12" to 120" (305 mm to 3050 mm) in 1" (25 mm) increments. Larger sizes are available.

Each Ultra-sorb humidifier is furnished with:
1. Type 304 stainless steel header/seperator and dispersion tubes.
2. Tube adapters for connection of dispersion tubes to header (two per tube).

Each Ultra-sorb humidifier used with boiler steam is also furnished with:
1. Two 3/4" NPT float and thermostatic header traps on Model LH.
2. Inlet "Y" strainer.
3. Normally closed steam valve with stainless steel parabolic plug and seat.
Ultra-sorb Model LV and LH connections and dispersion tube detail

FIGURE 13-1: ULTRA-SORB MODEL LH STEAM INLET AND CONDENSATE OUTLET POSITIONS

- Air flow
- Steam inlet locations
- Standard drain location
- Condensate drain outlets

FIGURE 13-2: DISPERSION TUBE DETAIL

- Header
- 4.5” (Typ)
- 1½” Offset (Typ)
- 1½” Dia. dispersion tube
- Orifice tubelet
- Slip coupling with o-rings

FIGURE 13-3: ULTRA-SORB MODEL LH STEAM INLET TYPES

- Flange
- Hose
- Threaded

FIGURE 13-4: INSULATED TUBE DETAIL (HIGH-EFFICIENCY TUBE OPTION)

- Steam supply header separator
- Dispersion tubes
- Tubelets
- Dispersion tube insulation
Selecting the location

DETERMINE HUMIDIFIER PLACEMENT
Dispersed steam must be absorbed into the airflow before it comes in contact with duct elbows, fans, vanes, filters, or any object that can cause condensation and dripping.

- Install the Ultra-sorb panel in a location where discharged water vapor will be absorbed by the airstream.
- In general, place the Ultra-sorb panel where the air temperature is capable of absorbing discharged steam without causing condensation at or after the unit. This will normally be downstream from the heating coil where the air is warmest.
- Do not place the Ultra-sorb panel in an outside air intake unless the air is tempered with a preheat coil.
- Do not place the Ultra-sorb panel near the entrance of a high-efficiency filter. The filter will remove visible moisture and become waterlogged. See the Caution “Installing Ultra-sorb upstream from filter media” on Page 28.
- Do not place the Ultra-sorb panel where discharged visible mist will impinge directly on a metal surface.

PLACEMENT IN AN AIR HANDLING UNIT
See Figure 15-1.

- **Location A is the best choice.** Installing downstream from heating and cooling coils provides laminar flow through the dispersion unit; plus, the heated air provides an environment for best absorption.
- **Location B is the second-best choice.** However, in change-over periods, the cooling coil will eliminate some moisture for humidification.
- **Location C is the third-best choice.** Air leaving a fan is usually very turbulent and can cause vapor to not absorb at the expected non-wetting distance. Allow for more distance if installing downstream from a fan.
- **Location D is the poorest choice.** The cooler air at this location requires an increased non-wetting distance.
Selecting the location

FIGURE 15-1: PLACING A DISPERSION ASSEMBLY IN AN AIR HANDLING UNIT
Mounting and support

INSTALLATION IN A COLD AIR STREAM
When a humidifier is installed in a duct that will carry cold air, determine the dew point temperature. If the psychrometric chart reveals that saturation may occur, protection should be provided. A high-limit humidistat or thermostat set to cut off the humidifier at a safe temperature can be used for this purpose. See Figure 16-1.

PLACEMENT UPSTREAM FROM AN ELBOW OR DUCT SPLIT
Due to Ultra-sorb’s rapid steam absorption performance, installation upstream from elbows or duct splits can be done with confidence. See Figure 16-2.

INSTALLATION ABOVE VALUABLE EQUIPMENT
Water piping and humidifiers should not be installed above expensive equipment. A condensing or leaking water pipe or other accidental water spillage could cause serious damage to the equipment below. When such an installation cannot be avoided, install a galvanized drip pan under the humidifier piping, valve, etc. to catch and drain away unintended water. See Figure 16-4.

RECRYCLATION UNIT
In applications where no duct system exists, or if the air is too cool for proper humidity absorption, a recirculation fan can be used. The fan circulates room temperature air across the humidifier and discharges humidified air into the space. Select the air discharge point carefully to avoid condensation on building or equipment surfaces. See Figure 16-3.

PANEL SUPPORT
The duct or air handler section and Ultra-sorb panel must be properly supported to carry the weight of the assembly. The weight of the piping must be supported by the building structure rather than by the Ultra-sorb unit. Otherwise, the weight may impose stress on the connections, causing them to fracture and leak. The bottom surface of the Ultra-sorb panel must be supported from below at the midpoint of the enclosure.

FIGURE 16-3: RECYCLATION UNIT

FIGURE 16-4: INSTALLATION ABOVE VALUABLE EQUIPMENT

* This length of duct should have sealed seams and should be at least three times the height of the Ultra-sorb panel.

FIGURE 16-1: INSTALLATION IN A COLD AIR STREAM

FIGURE 16-2: UPSTREAM PLACEMENT

OM-178

OM-179

OM-197

OM-198
Mounting and support

The Ultra-sorb panel can operate with air flow in either direction; however, the steam supply must be connected to the supply header assembly, and condensate must be drained from the condensate header assembly.

Verify that all steam discharge tubelets are pointed perpendicular to the airstream (see Figure 17-2). The slip couplings provide easy rotation of the dispersion tubes for proper tubelet orientation.

When removing and installing slip couplings, verify that the O-rings are seated in their grooves and lubricated. When sliding the dispersion tube into the slip coupling, be careful not to cut the O-rings.

Note: To prevent leakage, use HVAC caulking or a similar weather sealant to seal all places where the Ultra-sorb installation hardware and fittings penetrate the wall of the duct.
Mounting and support

MOUNTING IN AN AIR HANDLING UNIT

See placement recommendations in Figure 15-1.

The metal support frame should be anchored to the air handler casing. Recommended fasteners for mounting the Ultra-sorb to a metal support frame are 1/4–20 nuts and bolts or #12 self drilling and tapping screws. Due to the possible forces exerted on this application, DriSteem recommends fastener spacing not to exceed 6" (150 mm). On larger Ultra-sorb installations, vertical channels may be required on both the inlet and outlet ends of the humidifier to provide proper support. See Figure 18-2.

FIGURE 18-1: ULTRA-SORB MODEL LV INSTALLED INSIDE AN AIR HANDLER

FIGURE 18-2: VERTICAL CHANNELS

Ultra-sorb Model LV, plan view
Mounting and support

MOUNTING IN A HORIZONTAL DUCT

The Ultra-sorb panel is contained within a mounting frame. A mounting flange 1½" (38 mm) wide is provided on all four sides of the unit. The 1½" (38 mm) wide portion of the header enclosure is intended to be a mounting flange. See Figures 19-1 and 19-2. A matching flange or metal frame is required on the ductwork for connection to the Ultra-sorb flanges. The recommended fastener is a #12 x 3/4" self-drilling and tapping screw, spacing not to exceed 12" (305 mm). If an angle-iron frame is provided on the duct section, a longer screw may be required.

Note: To avoid puncturing the header, screw penetration into the header enclosure should not exceed 3/4" (20 mm).

FIGURE 19-1: ULTRA-SORB MODEL LV

FIGURE 19-2: ULTRA-SORB MODEL LH

FIGURE 19-3: ULTRA-SORB MODEL LV
Mounting and support

MOUNTING IN A VERTICAL DUCT

Ultra-sorb LH panels for vertical airflow must be ordered for this application. Headers and tubes are pitched to accommodate vertical mounting. See Figure 20-1.

The Ultra-sorb panel is contained within a mounting frame. A mounting flange 1½" (38 mm) wide is provided on all four sides of the unit. The 1½" (38 mm) wide portion of the header enclosure is intended to be a mounting flange. See Figure 20-2. A matching flange or metal frame is required on the ductwork for connection to the Ultra-sorb flanges. The recommended fastener is a #12 x 3/4" self-drilling and tapping screw, spacing not to exceed 12" (305 mm). If an angle-iron frame is provided on the duct section, a longer screw may be required.

Note: To avoid puncturing the header, screw penetration into the header enclosure should not exceed 3/4" (20 mm).

FIGURE 20-2: ULTRA-SORB MODEL LH FOR VERTICAL AIRFLOW

Plan view

Header enclosure gasket secures header within enclosure

Mating flanges of duct are attached to header enclosures

1½" (38 mm) mounting flange

Header enclosure

Mating flanges of duct are attached to header enclosures

1½" (38 mm) mounting flange

Steam inlet

Condensate drain in dispersion tubes

Air flow

Condensate header

Supply header

Air flow

View from end of dispersion tubes

View from end of headers

FIGURE 20-1: ULTRA-SORB MODEL LH FOR VERTICAL AIRFLOW

Plan view

Header enclosure gasket secures header within enclosure

Mating flanges of duct are attached to header enclosures

1½" (38 mm) mounting flange

Header enclosure

Mating flanges of duct are attached to header enclosures

1½" (38 mm) mounting flange

Steam inlet

Condensate drain in dispersion tubes

Air flow

Condensate header

Supply header

Air flow

View from end of dispersion tubes

View from end of headers
Supply and drain connections and dimensions

Table 21-1: Condensate piping for Ultra-sorb LV and LH steam dispersion panels

<table>
<thead>
<tr>
<th></th>
<th>Evaporative steam</th>
<th>Pressurized steam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>construction</td>
<td>wetted components</td>
</tr>
<tr>
<td></td>
<td>(accessories may</td>
<td>(accessories may</td>
</tr>
<tr>
<td></td>
<td>include stainless</td>
<td>include stainless</td>
</tr>
<tr>
<td></td>
<td>steel, copper,</td>
<td>steel, copper,</td>
</tr>
<tr>
<td></td>
<td>iron, and brass)</td>
<td>iron, and brass)</td>
</tr>
</tbody>
</table>

P-trap water seal (Duct)** (Figure 21-1)
- **Drop: 2” (50 mm) Seal: 8” (205 mm)
- **Recommended method
 - **Drop: 2” (50 mm) Seal: 10” (255 mm)
- **Stainless steel

P-trap water seal (AHU)**
- **Drop: 6” (150 mm) Seal: 4” (105 mm)
- **Recommended method
 - **Drop: 6” (150 mm) Seal: 6” (150 mm)
- **Stainless steel

F&T trap
- No

Inverted bucket trap
- No

Stainless steel trap
- No

Condensate to open drain
- Yes

Condensate return by condensate pump (Figure 21-2)
- Yes (stainless steel pump recommended)
- Yes (stainless steel pump recommended)

Condensate return to humidifier by gravity
- Yes
- Yes

Condensate return to boiler via return line
- NA
- NA
- No*
- No*

* Use Ultra-sorb XV. Note that Ultra-sorb XV has a copper heat exchanger and may not be applicable for copper-sensitive applications.

** Duct assumes downstream of the supply fan. AHU assumes upstream of the supply fan. Trap dimensions provided for a maximum 5” (127 mm) w.c. differential between humidifier location and ambient.

Note:
For detailed information about steam piping, see the DriSteem Humidification System Design Guide, which can be downloaded from the Literature page of our website: www.dristeem.com.
Table 22-1: Maximum steam carrying capacity and length of interconnecting steam hose or tubing

<table>
<thead>
<tr>
<th>Steam hose</th>
<th>Copper or stainless steel tubing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hose I.D.</td>
<td>Maximum capacity</td>
</tr>
<tr>
<td>inches</td>
<td>DN</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>1½</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Data based on an ambient air temperature of 80 °F (27 °C), fiberglass insulation, and copper tubing.

1. When using steam hose, use DriSteem steam hose for best results. Field-supplied hose may have shorter life and may cause foaming in the evaporating chamber resulting in condensate discharge at the dispersion assembly. Do not use steam hose for outdoor applications.
2. Maximum recommended length for steam hose is 10' (3 m). Longer distances can cause kinking or low spots.
3. Insulate tubing to minimize loss of capacity and efficiency.
4. Developed length of tubing equals measured length plus 50% of measured length, to account for fittings. Longer tubing lengths are possible at capacities lower than listed maximums. Consult factory.
5. Requires flange connection.

Table 22-2: Steam loss of interconnecting steam hose or tubing

<table>
<thead>
<tr>
<th>Description</th>
<th>Nominal hose or tubing size</th>
<th>Steam loss</th>
<th>Insulation thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches</td>
<td>DN</td>
<td>lbs/hr/ft</td>
</tr>
<tr>
<td>Hose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½</td>
<td>40</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Tubing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½</td>
<td>40</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0.26</td>
<td>0.39</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>0.31</td>
<td>0.46</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>0.36</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Note: Data based on an ambient air temperature of 80 °F (27 °C), fiberglass insulation, and copper tubing.
Piping

STEAM FROM A BOILER
Ultra-sorb panels for boiler steam have a threaded pipe nipple that extends outside the framework for a steam supply connection. The steam supply line should be dripped immediately ahead of the steam valve through a steam trap. See Figure 21-3.

DRIEST STEAM
To ensure driest steam, take humidifier steam off the top of the steam main (not the side or bottom).

AIRFLOW PROVING SWITCH
An air flow proving switch is recommended to prevent the steam valve from opening if air is not moving in the duct.

HIGH LIMIT HUMIDISTAT
To prevent over saturation when duct air is cooler than 70 °F (21 °C), a high limit (duct mounted) humidistat is recommended (Figure 16-1). Mount it 10' to 15' (3 to 4.5 m) downstream from the Ultra-sorb panel, and set it at 80 to 90% RH.

Table 23-1: O.D. of pipe and tubing

<table>
<thead>
<tr>
<th>Nom. Dia.</th>
<th>Standard pipe</th>
<th>Copper tubing</th>
<th>SST tubing</th>
<th>I.D. of hose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1¼" (30 mm)</td>
<td>1.660</td>
<td>1.375</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1½" (38 mm)</td>
<td>1.900</td>
<td>1.625</td>
<td>1.500</td>
<td>1.50</td>
</tr>
<tr>
<td>2" (50 mm)</td>
<td>2.375</td>
<td>2.125</td>
<td>2.000</td>
<td>2.00</td>
</tr>
<tr>
<td>2½" (65 mm)</td>
<td>2.875</td>
<td>2.625</td>
<td>3.000</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Note: Pipe thread and flange tubing adapters are available from DriSteem.
Piping

STEAM FROM A NON-ELECTRODE-TYPE EVAPORATIVE HUMIDIFIER

This section provides piping instructions for resistive-element electric, GTS, and STS evaporative humidifiers. For electrode-type humidifier piping, see Page 25.

TUBING

Standard connections on DriSteem evaporative humidifiers are 1½” (38 mm) stainless steel tubing. Two inch tubing connections are available as an option on higher capacity evaporative units. Hose cuffs are available for connecting to the tubing connection on the evaporative humidifier and to the Ultra-sorb (see Figure 24-2). If specified, DriSteem can also provide threaded connections on the evaporative humidifier and on the Ultra-sorb. For threading pipe connection options, see DriSteem’s DriCalc sizing and selection software, available at www.dristeem.com.

When non-threaded pipe is used, steam hose and clamps can be used for connections at the humidifier steam outlet and at the Ultra-sorb. Due to the difference between the tubing O.D. and the steam hose I.D., multiple hose clamps may be required.

STEAM HOSE PITCH

Support steam hose to prevent sags or low spots, and pitch at least 2”/ft (15%). Recommended to pitch towards Ultra-sorb so condensate and steam flow in same direction. Alternatively can be return to humidifier using same 2”/ft (15%) pitch.

TUBING PITCH

• Pitch at least 1/8”/ft (1%) towards Ultra-sorb so condensate and steam flow in same direction. Alternatively can pitch back to humidifier using at least 1/4”/ft (2%) if using insulated tubing/pipe or 1/2”/ft (4%) if not insulated tubing/pipe.

• 90° elbows are not recommended. Use two 45° elbows one foot apart (see Figure 24-2).

Failure to follow the above recommendations may result in excessive back pressure on the evaporative humidifier. This may lead to loss of water seal or leaking gaskets. When the distance between the Ultra-sorb and the evaporative humidifier exceeds 20 feet (6 m), consult the factory for special recommendations.

• Thin wall tubing will heat up with less start up heat loss than heavy wall pipe.

• Insulate the tubing to reduce the loss in output caused by condensation in the tubing.

SUPPORT

Support interconnecting piping between the humidifier steam outlet and the dispersion system with pipe hangers. Failure to properly support the entire steam piping weight can cause damage to the humidifier tank and void the warranty.
Piping

STEAM FROM AN ELECTRODE-TYPE EVAPORATIVE HUMIDIFIER

TUBING
Standard steam hose connects to DriSteem electrode steam humidifier cylinders and to the Ultra-sorb steam inlet directly or with a stainless steel adaptor. Hose cuffs are also available for connecting tubing. If specified when ordered, DriSteem can provide a threaded connection on the Ultra-sorb steam inlet. For threading pipe connection options, see DriSteem’s DriCalc sizing and selection software, available at www.dristeem.com.

Hose and clamps can be used for connections at the steam cylinder and at the Ultra-sorb. Due to the difference between the tubing O.D. and the steam hose I.D., multiple hose clamps may be required.

STEAM HOSE PITCH
Support steam hose to prevent sags or low spots, and pitch at least 2"/ft (15%) toward the Ultra-sorb.

TUBING PITCH
- Pitch at least 1/8" /ft (1%) toward the Ultra-sorb so condensate and steam flow in same direction.
- 90° elbows are not recommended. Use two 45° elbows one foot apart as shown in Figure 24-2.

Failure to follow the above recommendations may result in faults at the electrode-type humidifier. This may lead to erratic or stopped operation. When the distance between the Ultra-sorb and the evaporative humidifier exceeds 20 feet (6 m), consult the factory for special recommendations.

- Thin wall tubing will heat up with less start up heat loss than heavy wall pipe.
- Insulate the tubing to reduce the loss in output caused by condensation in the tubing.

FIGURE 25-2: ULTRA-SORB MODEL LV IN A HORIZONTAL AIRFLOW WITH ELECTRODE-TYPE HUMIDIFIER

Condensate drainage for all applications
Since Ultra-sorb panels operate with virtually zero internal pressure, condensate cannot be piped directly into a return main. It must be wasted to a floor drain or piped into a small condensate pump and returned to the steam source.

To prevent steam from escaping down the drain line, install a water seal in the drain line. The water seal must be of sufficient height to contain the pressure in the humidifier.

Two P-traps with water seals, one for each header, are required on the horizontal dispersion tube (Model LH) Ultra-sorb. One P-trap is required on the lower header of the vertical-tube (Model LV) Ultra-sorb.

FIGURE 25-1: CONDENSATE DRAINAGE

Steep hose, tubing, or pipe

Electrode-type humidifier

Pitch toward Ultra-sorb*

90° long sweep or two 45° elbows

Steam hose, tubing, or pipe

* Pitch steam hose, tubing, or pipe toward Ultra-sorb:
 2°/ft (15%) when using steam hose.
 1°/ft (1%) when using tubing or pipe.
Retrofitting an existing Ultra-sorb

Before retrofitting an existing Ultra-sorb panel with High-Efficiency Tubes, shut off steam to the system, and let all hot surfaces cool. See the Warning below.

Note: Replacement slip couplings with internal O-rings are shipped with retrofit High-Efficiency Tube orders. There are two types of slip couplings: with shoulders and without. Slip couplings with shoulders must go on the supply header end of the dispersion tube. See Figure 26-2.

FIGURE 26-2: DISPERSION TUBE SLIP COUPLINGS

1. Slide the slip couplings off the condensate header far enough to reveal the ends of the dispersion tubes.

2. Swing the dispersion tubes away from the condensate header, and pull the dispersion tubes and slip couplings off the supply header.

FIGURE 26-1: PVDF INSULATING MATERIAL

- The white PVDF insulating material stays on the tubes. Do NOT remove it.

REMOVE UNINSULATED TUBES WHEN COOL TO THE TOUCH

Note: The photos below depict Ultra-sorb Model LV (vertical tubes). The supply header is on the top, and the condensate header is on the bottom. If retrofitting an Ultra-sorb Model LH (horizontal tubes), pay attention to the location of the supply and condensate headers.

WARNING

Hot surface hazard
Steam humidification systems have extremely hot surfaces.

To avoid burns, allow humidifier, steam pipes, and dispersion assemblies to cool before touching any part of the system.
Retrofitting an existing Ultra-sorb

3. Remove the dispersion tube, and make sure nothing loose falls into the header.

INSTALL HIGH-EFFICIENCY TUBES

Note: The photos below show the High-Efficiency Tubes without the clear poly film for demonstration purposes only. To prevent dirty insulating material, install the High-Efficiency Tubes before tearing off the clear poly film.

1. Install the new slip couplings on the high-efficiency dispersion tubes as shown.

2. Connect the dispersion tubes to the supply header with the shouldered slip couplings. Push and twist each dispersion tube until the shoulder bottoms out, then connect the dispersion tubes to the condensate return header with the other slip couplings.

3. Push the non-shouldered slip couplings against the stop disks on the condensate return header.

4. Rotate the dispersion tubes to point the tubelets perpendicular to the airflow.

Note:
See maintenance instructions for High-Efficiency Tubes on Page 30.
Performance data

NON-WETTING DISTANCE
Non-wetting distance is the dimension downstream from the leaving side of the steam dispersion assembly to the point where wetting will not occur, although wisps of steam may be present. This distance was calculated during humidification system design and is dependent on several application parameters. To determine your dispersion assembly’s non-wetting distance, consult your system’s design engineer or project documentation. Non-wetting distance can also be calculated using DriSteem’s DriCalc sizing and selection software, available at www.dristeen.com. Note that your current design conditions may vary from conditions used for system design.

- Note that the rise in RH (ΔRH) between entering and leaving air has a direct bearing on the non-wetting distance. As the ΔRH increases, more vapor needs to be dispersed into the air; thus, the non-wetting distance increases.
- Uneven airflow over the Ultra-sorb panel cross-section may result in nonuniform mixing of steam with air, which may adversely affect absorption distance.
- A small but measurable amount of duct air pressure loss will be present downstream from the Ultra-sorb panel, depending on air density, velocity, and tube spacing. See Table 28-1.

<table>
<thead>
<tr>
<th>Duct air velocity (55 °F at sea level)</th>
<th>Tube spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3”</td>
</tr>
<tr>
<td>Uninsulated tubes</td>
<td></td>
</tr>
<tr>
<td>500 fpm</td>
<td>2.54</td>
</tr>
<tr>
<td>1000 fpm</td>
<td>5.08</td>
</tr>
<tr>
<td>1500 fpm</td>
<td>7.62</td>
</tr>
<tr>
<td>High-Efficiency Tubes</td>
<td></td>
</tr>
<tr>
<td>500 fpm</td>
<td>2.54</td>
</tr>
<tr>
<td>1000 fpm</td>
<td>5.08</td>
</tr>
<tr>
<td>1500 fpm</td>
<td>7.62</td>
</tr>
</tbody>
</table>

Notes:
- Ultra-sorb panels with 9” (225 mm) or 12” (300 mm) tube spacings have no measurable air pressure loss.
- Use DriSteem’s DriCalc sizing and selection software to calculate your specific air pressure loss.

CAUTION
Installing Ultra-sorb upstream from filter media
Non-wetting distances described here do not apply when installing an Ultra-sorb panel upstream from filter media. If you must install upstream from filter media, consult DriSteem or your local DriSteem representative for recommendations.
Startup

1. Turn on humidification steam to the Ultra-sorb supply header:
 - Boiler steam: Open the modulating steam valve.

2. Check for piping leaks.

3. See “Steam traps” on page 30.

4. Check the dispersion tubes for leaks.
 Note: Spitting from the slip coupling at either end of a dispersion tube could be caused by a missing O-ring. See Figures 34-1 and 34-3.

5. Ensure that the dispersion tubes are oriented with the tubelets at a right angle to the airflow. See Figure 17-1.

6. Check for any other leaks from steam and drain connections.

7. Ensure that the P-traps are operating.
 - At the beginning of the season, ensure there is a stream of water from condensate drain when operating.
 1. If not, verify P-trap is not blocked.
 2. If steam is blowing out of the P-trap, it needs to be primed.
 3. Verify the P-trap is tall enough to contain panel operating pressure (see page 21).
 4. Duct static pressure > 2.5" (63.5 mm) wc may require a taller P-trap.
Inspecting and servicing components

STRAINER
Inspect the strainer screen at least twice during the first year. If fouled, inspect it more frequently.

STEAM TRAPS ON MAIN STEAM SUPPLY
At least twice a year verify that steam traps are functioning properly. A blocked steam trap is cold. A "blowing" steam trap is hot and noisy, and the discharge pipe from it is hot for 30 feet. A properly operating steam trap is hot and makes noise at intervals, and the discharge pipe is progressively cooler beginning at the trap.

VALVES
- **Pneumatic:**
 Inspect annually to be sure the valve closes off steam tightly, the stem packing is not leaking steam, and the diaphragm in the actuator is not leaking air.
- **Electric modulating:**
 Inspect annually to be sure that the valve operates freely and closes off steam tightly and the stem packing is not leaking.
- **Solenoid type:**
 Inspect annually to verify proper functioning with steam-tight shut off.

O-RINGS (IN SLIP COUPLINGS)
Visually inspect after two or three years of service, replace if necessary.

HIGH-EFFICIENCY TUBES
- If the insulating material gets torn, repair the tear with our Insulating Material Repair Kit before dispersing steam or moving air through the air handler to prevent further damage. This available kit uses tested and proven PVDF as repair material; do not use other adhesives or repair methods in place of the kit.
- If the insulating material gets dirty or smudged, gently clean it with a damp cloth and a solution of soapy water or diluted non-toxic, biodegradable cleaner/degreaser.
- Do not clean the insulating material with a pressure washer. The direct spray could cause damage.
- If using a torch in the vicinity of the dispersion panel, keep the flame away from the insulating material to avoid damage.
- PVDF is inherently resistant to UV light. Indirect, low-intensity UV-C light from germicidal lamps will not cause the insulating material to degrade.
- Do not tighten mounting clamps or fasteners to any part of the dispersion tube.
Troubleshooting

Table 31-1:
Ultra-sorb Models LV and LH troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidifier discharges water in duct</td>
<td>• Steam main overloaded with water due to boiler discharging water with steam (priming)</td>
<td>• Locate cause of priming and correct.</td>
</tr>
<tr>
<td></td>
<td>• P-trap not draining properly</td>
<td>• Replace or clean trap as required.</td>
</tr>
<tr>
<td></td>
<td>• Humidifier improperly piped</td>
<td>• Correct the piping as shown on Page 21. For horizontal airflow, steam inlet should be at the top of the assembly and condensate outlet at the bottom of the assembly. For vertical airflow, see Page 20.</td>
</tr>
<tr>
<td></td>
<td>• Surges of condensate in steam supply due to condensate collecting at low, undripped point in steam main</td>
<td>• Install drips and steam traps as required. See Page 21.</td>
</tr>
<tr>
<td></td>
<td>• Inadequate main steam trap capacity</td>
<td>• Replace with larger trap.</td>
</tr>
<tr>
<td>Slip couplings leak water</td>
<td>• Defective o-rings in slip couplings</td>
<td>• Replace o-rings.</td>
</tr>
<tr>
<td>Humidity exceeds setting of humidistat</td>
<td>• Automatic valve not fully closing</td>
<td>• Foreign matter holding valve open; clean valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valve spring broken; replace spring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valve steam packing too tight; loosen and/or replace packing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steam pressure exceeds close-off rating of valve spring; replace actuator or valve spring with one that is compatible with the higher steam pressure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Valve installed backwards; re-install.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjust valve linkage.</td>
</tr>
<tr>
<td></td>
<td>• Electric control system malfunctioning</td>
<td>• Calibrate or replace.</td>
</tr>
<tr>
<td></td>
<td>• Faulty or inaccurately placed humidity controller</td>
<td>• Replace controller or relocate per catalog recommendations.</td>
</tr>
<tr>
<td></td>
<td>• Poor location of control components</td>
<td>• Relocate per catalog recommendations.</td>
</tr>
<tr>
<td></td>
<td>• Incompatible control components</td>
<td>• Replace per specified recommendations.</td>
</tr>
<tr>
<td></td>
<td>• Automatic valve is hunting</td>
<td>• Humidifier capacity is oversized; change to smaller valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pressure reducing valve is not accurately controlling steam pressure; repair or replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boiler pressure is swinging too widely; adjust.</td>
</tr>
<tr>
<td></td>
<td>• Excessive outside air volume</td>
<td>• Check fans, dampers, VAV, etc. See formula below. Mixed Air Inlet formula: ($%$ outside air \times moisture content) + ($%$ return air \times moisture content) = mixed air inlet in lbs/100 cfm (kg/100 m³/h).</td>
</tr>
</tbody>
</table>

Continued
Troubleshooting

Table 25-1: Ultra-sorb Models LV and LH troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control system malfunctioning</td>
<td>• Incorrect control voltage</td>
<td>• Replace transformer.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect control signal</td>
<td>• Replace components.</td>
</tr>
<tr>
<td></td>
<td>• Improper wiring connections</td>
<td>• Rewire.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect humidity sensor</td>
<td>• Replace.</td>
</tr>
<tr>
<td></td>
<td>• Humidity controller out of calibration</td>
<td>• Recalibrate.</td>
</tr>
<tr>
<td>Air cannot absorb steam quantity being discharged</td>
<td>• Humidifier operates when blower is off</td>
<td>• Provide interlock.</td>
</tr>
<tr>
<td></td>
<td>• Valve is hunting</td>
<td>• See above.</td>
</tr>
<tr>
<td></td>
<td>• Air temperature in duct too low for steam quantity being emitted</td>
<td>• Raise duct air temperature.</td>
</tr>
<tr>
<td>Humidifier is noisy</td>
<td>• Steam pressure too high</td>
<td>• Reduce pressure.</td>
</tr>
<tr>
<td></td>
<td>• Header vibrating within header shell</td>
<td>• Tighten hardware.</td>
</tr>
</tbody>
</table>

Continued
Troubleshooting

Table 25-1:
Ultra-sorb Models LV and LH troubleshooting (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space humidity will not rise to humidistat set point</td>
<td>• Steam pressure too low</td>
<td>• Increase.</td>
</tr>
<tr>
<td></td>
<td>• Manual steam valve partially closed</td>
<td>• Open.</td>
</tr>
<tr>
<td></td>
<td>• Strainer screen partially clogged</td>
<td>• Clean.</td>
</tr>
<tr>
<td></td>
<td>• Boiler pressure too low</td>
<td>• Adjust control.</td>
</tr>
<tr>
<td></td>
<td>• Pressure reducing valve not accurately controlling steam pressure</td>
<td>• Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Boiler pressure swinging too widely</td>
<td>• Adjust controls.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect piping</td>
<td>• Repipe. See Page 21.</td>
</tr>
<tr>
<td></td>
<td>• Undersized steam piping</td>
<td>• Replace.</td>
</tr>
<tr>
<td></td>
<td>• Undersized humidifier</td>
<td>• Replace valve with larger capacity valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace with larger humidifier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add additional humidifier.</td>
</tr>
<tr>
<td></td>
<td>• Automatic steam valve not fully opening</td>
<td>• Valve packing is adjusted too tightly, loosen and/or replace packing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjust valve linkage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recalibrate humidistat.</td>
</tr>
<tr>
<td></td>
<td>• Electric control system malfunctioning</td>
<td>• Change transformer.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect control circuit voltage</td>
<td>• Replace component(s) to make all components compatible.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect control signal</td>
<td>• Replace components.</td>
</tr>
<tr>
<td></td>
<td>• Improper wiring</td>
<td>• Rewire.</td>
</tr>
<tr>
<td></td>
<td>• Incorrect humidity sensor</td>
<td>• Replace sensor.</td>
</tr>
<tr>
<td></td>
<td>• Humidity controller out of calibration or malfunctioning</td>
<td>• Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Malfunctioning humidifier temperature switch not allowing humidifier valve to open</td>
<td>• Replace or readjust.</td>
</tr>
<tr>
<td></td>
<td>• Pneumatic control system malfunctioning</td>
<td>• Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Obstructed air line</td>
<td>• Remove obstruction.</td>
</tr>
<tr>
<td></td>
<td>• Malfunctioning pneumatic temperature switch</td>
<td>• Replace switch.</td>
</tr>
<tr>
<td></td>
<td>• Air leak in actuator</td>
<td>• Repair or replace diaphragm.</td>
</tr>
<tr>
<td></td>
<td>• Compressed air pressure is too low</td>
<td>• Adjust pressure.</td>
</tr>
</tbody>
</table>

Condensate in duct

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensate in duct</td>
<td>• Foreign matter preventing valve from closing</td>
<td>• Clean or replace valve.</td>
</tr>
<tr>
<td></td>
<td>• Humidifier is mounted too close to internal devices (dampers, turning vanes, etc.) in duct</td>
<td>• Move humidifier tubes to a point further upstream from internal devices.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add more dispersion tubes for shorter non-wetting distance. Consult DriSteem to determine the total number of tubes required.</td>
</tr>
<tr>
<td></td>
<td>• Non-insulated duct passing through unheated area (duct surface temperature too low)</td>
<td>• Insulate ductwork.</td>
</tr>
</tbody>
</table>
Replacement parts

FIGURE 34-1: ULTRA-SORB MODEL LV REPLACEMENT PARTS

FIGURE 34-2: HEADER (NONPRESSURIZED STEAM)

(12) Steam trap

FIGURE 34-3: ULTRA-SORB MODEL LH REPLACEMENT PARTS

(12) Steam trap
Table 35-1: Ultra-sorb replacement parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O-rings</td>
<td>300400-006</td>
</tr>
<tr>
<td>2</td>
<td>Slip coupling with shoulder, 1½" (38 mm)</td>
<td>162727-102</td>
</tr>
<tr>
<td></td>
<td>Slip coupling without shoulder, 1½" (38 mm)</td>
<td>162727-101</td>
</tr>
<tr>
<td>3</td>
<td>Tubelet</td>
<td>Consult factory</td>
</tr>
<tr>
<td>4</td>
<td>1½" (38 mm) High-Efficiency Tube</td>
<td>Consult factory</td>
</tr>
<tr>
<td></td>
<td>1½" (38 mm) Dispersion tube</td>
<td>Consult factory</td>
</tr>
<tr>
<td>6</td>
<td>Supply header, Ultra-sorb Model LH</td>
<td>Consult factory</td>
</tr>
<tr>
<td>7</td>
<td>Return header, Ultra-sorb Model LH</td>
<td>Consult factory</td>
</tr>
<tr>
<td>8</td>
<td>Supply header, Ultra-sorb Model LV</td>
<td>Consult factory</td>
</tr>
<tr>
<td>9</td>
<td>Return header, Ultra-sorb Model LV</td>
<td>Consult factory</td>
</tr>
<tr>
<td>10</td>
<td>1½" Drain tube, Ultra-sorb Model LV</td>
<td>Consult factory</td>
</tr>
<tr>
<td>12</td>
<td>Steam trap</td>
<td>Consult factory</td>
</tr>
<tr>
<td>13</td>
<td>Hose cuff</td>
<td>Consult factory</td>
</tr>
<tr>
<td>14</td>
<td>Hose clamp</td>
<td>Consult factory</td>
</tr>
<tr>
<td>15</td>
<td>Steam valve</td>
<td>Consult factory</td>
</tr>
<tr>
<td>16</td>
<td>Strainer</td>
<td>Consult factory</td>
</tr>
<tr>
<td>17</td>
<td>Steam connector</td>
<td>Consult factory</td>
</tr>
<tr>
<td>18</td>
<td>Mounting flange, Ultra-sorb Models LV and LH</td>
<td>Consult factory</td>
</tr>
<tr>
<td>19</td>
<td>Header enclosure, Ultra-sorb Model LH</td>
<td>Consult factory</td>
</tr>
<tr>
<td>20</td>
<td>Header enclosure, Ultra-sorb Model LV</td>
<td>Consult factory</td>
</tr>
<tr>
<td>21</td>
<td>Return header cover, Ultra-sorb Model LV</td>
<td>Consult factory</td>
</tr>
<tr>
<td>22</td>
<td>Header enclosure cap, Ultra-sorb Models LV and LH</td>
<td>Consult factory</td>
</tr>
</tbody>
</table>
Notes
Two-year Limited Warranty

DRI-STEEM Corporation ("DriSteem") warrants to the original user that its products will be free from defects in materials and workmanship for a period of two (2) years after installation or twenty-seven (27) months from the date DriSteem ships such product, whichever date is the earlier.

If any DriSteem product is found to be defective in material or workmanship during the applicable warranty period, DriSteem's entire liability, and the purchaser's sole and exclusive remedy, shall be the repair or replacement of the defective product, or the refund of the purchase price, at DriSteem's election. DriSteem shall not be liable for any costs or expenses, whether direct or indirect, associated with the installation, removal or reinstallation of any defective product. The Limited Warranty does not include cylinder replacement for electrode steam humidifiers.

DriSteem's Limited Warranty shall not be effective or actionable unless there is compliance with all installation and operating instructions furnished by DriSteem, or if the products have been modified or altered without the written consent of DriSteem, or if such products have been subject to accident, misuse, mishandling, tampering, negligence or improper maintenance. Any warranty claim must be submitted to DriSteem in writing within the stated warranty period. Defective parts may be required to be returned to DriSteem.

DriSteem's Limited Warranty is made in lieu of, and DriSteem disclaims all other warranties, whether express or implied, including but not limited to any IMPLIED WARRANTY OF MERCHANTABILITY, ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, any implied warranty arising out of a course of dealing or of performance, custom or usage of trade. DriSteem SHALL NOT, UNDER ANY CIRCUMSTANCES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS, REVENUE OR BUSINESS) OR DAMAGE OR INJURY TO PERSONS OR PROPERTY IN ANY WAY RELATED TO THE MANUFACTURE OR THE USE OF ITS PRODUCTS. The exclusion applies regardless of whether such damages are sought based on breach of warranty, breach of contract, negligence, strict liability in tort, or any other legal theory, even if DriSteem has notice of the possibility of such damages.

By purchasing DriSteem’s products, the purchaser agrees to the terms and conditions of this Limited Warranty.

Extended warranty

The original user may extend the term of the DriSteem Limited Warranty for a limited number of months past the initial applicable warranty period and term provided in the first paragraph of this Limited Warranty. All the terms and conditions of the Limited Warranty during the initial applicable warranty period and term shall apply during any extended term. An extended warranty term of an additional twelve (12) months or twenty four (24) months of coverage may be purchased. The extended warranty term may be purchased until eighteen (18) months after the product is shipped, after which time no extended warranties are available.

Any extension of the Limited Warranty under this program must be in writing, signed by DriSteem, and paid for in full by the purchaser.